登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于移频算法的机载设备承载板动柔度设计

基于移频算法的机载设备承载板动柔度设计

200    2020-06-22

¥0.50

全文售价

作者:任晓斌1, 黄从甲2, 李宝童2

作者单位:1. 中国飞行试验研究院远方测试系统研究中心, 陕西 西安 710089;
2. 西安交通大学 现代设计及转子轴承系统教育部重点实验室, 陕西 西安 710049


关键词:机载设备;动柔度;移频算法;拓扑优化


摘要:

随着现代飞机性能要求的大幅度提高,机载设备特别是电子设备将承受更加恶劣的机械振动环境。因此,为提高机载设备的可靠性,需对其进行动柔度的优化设计。该文以某型机载设备承载板为研究对象,根据承载板的工作状况和结构形式,建立承载板基于移频算法的优化数学模型。通过数值分析的手段对承载板进行动力学优化设计研究,以降低结构整体动柔度为目标函数,对承载板的支撑筋板进行拓扑优化设计。相比于传统动力学优化设计方法,该方法能够获取结构在整个频率区间的最优解,降低结构的动柔度,并可为现有各种机载设备的动柔度设计提供参考。


Design of dynamic stiffness of airborne equipment bearing plate based on generalized incremental frequency technique
REN Xiaobin1, HUANG Congjia2, LI Baotong2
1. Yuan-Fang Test System Research Center, Chinese Flight Test Establishment, Xi'an 710089, China;
2. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
Abstract: With the performance requirements of modern aircraft improved drastically, the airborne equipment, especially the electronic equipment, will withstand more severe mechanical vibration environments. Therefore, it is necessary to optimize the dynamic stiffness of the equipment, in order to improve the reliability of airborne equipment. This paper takes a certain type of airborne equipment bearing plate as the research object, and establishes an optimized mathematical model of the bearing plate based on the generalized incremental frequency technique according to the working condition and structural form of the bearing plate. The numerical analysis method is used to study the dynamic optimization design of the load bearing plate. With the objective function of reducing the overall dynamic compliance of the structure, the topological optimization design of the stiffener of the load bearing plate is performed. This method can obtain the optimal solution of the structure in the entire frequency range, which greatly reduces the dynamic compliance of the structure. Therefore, this method has reference value for the dynamic optimization design of airborne equipment, it can provide help for the dynamic stiffness design of existing airborne equipment.
Keywords: airborne equipment;dynamic stiffness;generalized incremental frequency technique;topology optimization
2020, 46(6):18-26  收稿日期: 2020-01-17;收到修改稿日期: 2020-03-08
基金项目:
作者简介: 任晓斌(1986-),男,陕西澄城县人,工程师,研究方向为航空飞行器试验测试与机载设备可靠性分析
参考文献
[1] 李朝旭. 电子设备的抗振动设计[J]. 电子机械工程, 2002, 18(1): 51-55
[2] 吴薇. 机载电子设备的抗振动设计机载电子设备减振设计[J]. 压电与声光, 2008, 30(1): 22-24
[3] 马帅旗. 机载电子设备减振设计[J]. 噪声与振动控制, 2014, 34(2): 185-187
[4] 彭克侠, 何海彬, 杨勇, 等. 壁挂式机载设备减振系统设计与分析[J]. 电子机械工程, 2017, 33(6): 27-31
[5] 杨文芳, 魏强, 朱兰琴. 基于有限元分析的机载电子设备减振设计[J]. 振动与冲击, 2010, 29(5): 237-241
[6] 翟玮. 某机载安装架的结构设计与动力学分析[J]. 电子机械工程, 2012, 28(1): 33-37
[7] 唐炜斌. 某型机载电子设备安装架动力学分析与优化设计[D]. 成都: 电子科技大学, 2008.
[8] 杨强, 师永宁, 杨利. 某机载设备隔振安装设计分析与试验研究[J]. 装备环境工程, 2018(9): 101-106
[9] 朱维兵, 巫发茂, 晏静江, 等. 基于模态灵敏度分析的机载控制台尺寸优化[J]. 现代制造工程, 2018, 449(2): 98-104
[10] 朱维兵, 巫发茂, 晏静江, 等. 拓扑优化机载控制台的整机随机振动分析与试验[J]. 西华大学学报(自然科学版), 2017, 36(1): 17-23
[11] ZHAO Y M, LIU C S, HE X M, et al. Dynamic design theory and application of large vibrating screen[J]. Procedia Earth and Planetary Science, 2009, 1(1): 776-784
[12] LEE D C. A Design of panel structure for the improvement of dynamic stiffness[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2004, 218(6): 647-654
[13] GUO H, LIU R, DENG Z, et al. Dynamic analysis and experiment of deployable truss structure for reflector antenna[C]// European Conference on Antennas & Propagation. IEEE, 2012: 827-831.
[14] WU R Q, ZHANG W, BEHDINAN K. Vibration requency analysis of beam-ring structure for circular deployable truss antenna[J]. International Journal of Structural Stability and Dynamics, 2018, 19(2): 530-535
[15] LEE D C, LEE J I. Structural optimization concept for the design of an aluminium control arm[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2003, 217(8): 647-656
[16] OLHOFF N, DU J B. Topological design of vibro-acoustic structures using a generalized incremental frequency method[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1113-1141

澳门新濠天地盘口代理 真人888盘口注册 心博天下游戏骰宝玩法 优优娱乐游戏免费注册 大丰收8大优惠
菲律宾申博手机APP 亚美怎样赚洗码费 王者至尊官方网站 江西时时开户 水果老虎机安卓版
水浒传老虎机越 99彩平台注册 帝都娱乐 澳门凯时赌场认证 88代理最高占成
金木棉娱乐 大世界线上娱乐城 申博亚洲正网 红树林游戏全新代理模式 天博国际娱乐代理开户